

The Impact of Your Philanthropy

SebastianStong Foundation July 2023

Fueling Hope for DMG Patients through a Trailblazing Partnership

Kids with deadly diffuse midline gliomas (DMG) have no time to lose. They need cures today. Children's National Hospital is proud to partner with the SebastianStrong Foundation to discover new therapies and save lives. Your community's support is fueling drug discovery efforts that promise to maximize the revolutionary potential of ultrasound technology.

A \$672,000 gift in 2022 launched a research collaboration between Children's National, Columbia University and Virginia Tech. We present this six-month progress update with deep appreciation.

Members of the research team investigating potential cures for DMG met at Virginia Tech this spring (L to R): Ayda Woldegerima, Dr. Jennifer Munson, Dr. Javad Nazarian and Sridevi Yadavilli.

Dr. Nazarian (left) and Dr. Eli Vlaisavljevich (right) of Virginia Tech thank the SebastianStrong Foundation for investing in pioneering DMG research.

Studies Launched and On Track

In 2022, Children's National performed the world's first pediatric surgery for a diffuse intrinsic pontine glioma using low intensity focused ultrasound (LIFU) in combination with 5-aminolevulinic acid (5-ALA) medication. The procedure uses LIFU to open the blood-brain barrier non-invasively.

Your gift fast-tracked the testing of additional drugs to use in combination with LIFU. The research team presented its progress in May 2023 at Virginia Tech. Please refer to the attached presentation for technical details and illustrations.

The team's progress includes the following milestones:

- Identifying biomarkers to study the effectiveness of ONC201, a therapy that may hold promise for DMG patients, in combination with LIFU
- Collaborating with Virginia Tech to develop and study novel 3-D DMG in vitro models
- Integrating DMG pre-clinical knowledge with engineering expertise of Virginia Tech
- Optimizing the platform for biomarker study

"We are optimizing biomarker testing in mouse models," says Javad Nazarian, Ph.D., the study's principal investigator. "This will help determine whether LIFU helps enhance the drug's penetration and efficacy. We hope to see breakthrough results."

The Power of Collaboration

The partnership between Children's National, Virginia Tech and Columbia University is laying the groundwork for discovery. Eli Vlaisavljevich, Ph.D., of Virginia Tech, is developing focused ultrasound devices to conduct forthcoming experiments. Jennifer Munson, Ph.D., of Virginia Tech, is creating 3D models. These will give our team a clearer window into how the treatments perform. Cheng-Chia Wu, M.D., Ph.D., of Columbia University, will leverage this research to inform new clinical trials. Dr. Wu previously developed the world's first clinical trial using focused ultrasound in children with relapsed DMG.

Our Gratitude

We remain grateful for everything you do in Sebastian's memory and for every patient with DMG and other deadly childhood tumors. Thank you for racing to cure childhood cancer.

Children's National.

Focused Ultrasound Consortium for Treatment of Children Diagnosed with Diffuse Midline Gliomas

Children's National Hospital Center for Genetic Medicine Research | J Nazarian, C. Wu, J. Munson, E. Vlaisavljevich

lational

What's the Plan and Where We Are So Far...

	SStrong Focused Ultrasound Project											
	Timeline/Milestone Overview	Year.2023				Year. 2024						
		Start Date							End Date			
		ın - Mar	pr - Jun	ıl - Sep	ict - Dec	ın - Mar	pr - Jun	ıl - Sep	ct - Dec			
	Aim, Lasks, Subtask, and Milestone Description	- r	×	- F	0	- L	A	4	0			
	Aim 1: Establish FUS Sonodynamic benefits for treatment of patients diagnosed with DMG									 		
1	Task 1: Assess Biomarkers of response upon FUS + ONC201 treatment											
1a	Subtask 1a: Establish Experimental Scheme for biomarker validation post FUS + ONC201											
1b	Subtask 1b: Establish Experimental groups/timepoints for murine models of DMG for biomarker validation post FUS+ONC201											
1c	Subtask 1c: Optimize platforms for biomarker validation											
1d	subtask 1d: Validate Biomarkers of response in murine models of DMG post FUS + ONC201											
	Aim 2: Define clinical FUS to induce immune system engagement in cold tumors including DMGs											
2	Task 2: Characterize the immunogenic effects of FUS with ICI for DMG											
2a	Subtask 2a: Establish Experimental Scheme for validation of anti-PD1 delivery post FUS									Pr	oposed ti	meline
2Ъ	Subtask 2b: Optimize platforms for validation of anti-PD1 delivery									Co	mpleted	
2c	Subtask 2c: Analyze Serum and brain tissue with ELISA/Western for anti-PD1 in murine models of DMG treated with FUS+ICI									in	Progress	
3	Task 3: Assess local changes in transcriptome post FUS treatment											
3a	Subtask 3a: Establish Experimental Scheme for assessing changes in transcriptome post FUS											
3Ъ	Subtask 3b: Perform RNAseq on murin models of DMG treated with or without FUS to assess sonodynamic effects											
3c	Subtask 3c: Identify local changes in transcriptome post FUS treatment											
4	Task 4: Characterize the immunogenic effects of FUS + RT with ICI for DMG											
4a	Subtask 4a: Establish Experimental Scheme for biomarkers validation post FUS+RT+anti-PD1											
4b	Subtask 4b: Optimize platforms for validation of biomarkers post FUS+RT+anti-PD1											
4c	Subtask 4c: Assess serum and CSF for Methylation Status test for potential biomarkers of response											
4 d	Subtask 4d: Perform histological and molecular assays to probe for predictive biomarkers of response post FUS+RT+anti-PD1											

Biomarker Analysis Post FUS + ONC201 Treatment in Murine Models of DMG

Biomarker Analysis

- 4 Experimental arms
 - Control, ONC201, FUS and ONC201+FUS
- Total Mice = 16
 - 4 mice per arm 1 per timepoint
- Samples collected will be Plasma, frozen Brain and FFPE
- Samples will be sent to Children's National Research Institute early June

Optimization of Biomarker Analysis Post ONC201 Treatment

HSJD-DIPG-007

- Patient derived Diffuse intrinsic pontine glioma cell line
- H3.3K27M Mutation
- ACVR1 Mutation

Biomarker Analysis

• CHOP

•

•

BCL2

Cleaved Caspace-3

Biomarkers to assess:

- ClpP
- ClpX
- NUDAF12
- ATF4

IHC

Biomarker Analysis Post ONC201 Treatment in Murine Models of DMG

Przystal et al, Neuro-Oncology 2022

Development of an In vitro Model of DMG

In vitro FUS system

Voltage PtP vs. Input Voltage

Quantification of cell types in patient samples of diffuse midline glioma.

DMG Cells

Astrocytes

Microglia

🔆 Neurons

Next Steps

- Optimization of IHC with murine models of DMG
 post ONC201 treatment
- Validation of Biomarkers in Patient Tissue post
 ONC201 treatment
- Validation of Biomarkers in murine models of DMG
 Post FUS+ONC201

Project 2: Define Clinical FUS to Induce Immune System Engagement in Cold Tumors Including DMGs

Aim 2: Characterize the immunogenic effects of FUS and RT with ICI for DMG

Testing feasibility of enhanced anti-PD1 delivery with FUS

Specimen	Assay	Read-out				
Tissue(50mg)	Western Blot	Anti-PD1				
Non-invasive imaging	Optical label anti-PD1	Imaging finding				

Project 2: FUS Enhances Anti PD1 Delivery

Anti-PD1 antibody is optically labeled.

9227

4613

ADU

📕 -50 kDa

-25 kDa -50 kDa FUS was delivered to the brainstem

Accumulation of antibody was observed at site of BBBopening

Ex-vivo imaging showed no optical signal in the brainstem without FUS.

Western blot performed to confirm anti-PD1 delivery

Project 2: FUS and Anti-PD1 Improved Local Control and Overall Survival

MRI imaging showed tumor progression in 5/5 mice treated with either anti-PD1 or FUS+Isotype

Delayed disease progression was seen in FUS+PD1

Project 2: FUS+PD1 Improved Local Control and OS

Local control and Overall Survival seen with FUS+PD1

Thank You!

